Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration.
نویسندگان
چکیده
A new technique to design an all-fiber temporal differentiator that has a large bandwidth and an arbitrary differentiation order is proposed and investigated. The proposed temporal differentiator is a special fiber Bragg grating (FBG) that is designed by controlling its magnitude and phase responses with the discrete layer peeling (DLP) method. There are three important features of this technique: 1) the temporal differentiator has an arbitrary magnitude response and a controllable bandwidth; 2) the temporal differentiator can be designed and fabricated with an arbitrary differentiation order that is realized in a single FBG; 3) the required maximum index modulation of the FBG-based differentiator is largely decreased by using a Gaussian windowing function. The use of the proposed technique to design temporal differentiators with a differentiation order up to the fourth and with a bandwidth up to 500 GHz is studied. A proof-of-concept experiment is then carried out. A first- and a second-order temporal differentiator with a bandwidth of 25 GHz are experimentally demonstrated.
منابع مشابه
Experimental demonstration of an optical differentiator based on a fiber Bragg grating in transmission.
We report the first experimental demonstration of single transmissive fiber Bragg grating implementation of a first-order optical differentiation. The device has been designed and fabricated, and the experimental results show a good performance over an operational bandwidth of ~2 nm.
متن کاملProgrammable wavelength-tunable second-order optical temporal differentiator based on a linearly chirped fiber Bragg grating and a digital thermal controller.
We proposed and experimentally demonstrated an all-fiber structured wavelength-tunable second-order optical temporal differentiator based on a linearly chirped fiber Bragg grating and a digital-controlled thermal array. The central frequency of the differentiation can be reconfigured from 192.141 to 192.616 THz by a programmable circuit. In the experiment, a second-order differentiator with 3 d...
متن کاملUltrafast all-optical Nth-order differentiator based on chirped fiber Bragg gratings.
In this letter we present a technique for the implementation of Nth-order ultrafast temporal differentiators. This technique is based on two oppositely chirped fiber Bragg gratings in which the grating profile maps the spectral response of the Nth-order differentiator. Examples of 1(st), 2(nd), and 4(th) order differentiators are designed and numerically simulated.
متن کاملOptimization of Bistability in Nonlinear Chalcogenide Fiber Bragg Grating for All Optical Switch and Memory Applications
We solve the coupled mode equations governing the chalcogenide nonlinear fiber Bragg gratings (FBGs) numerically, and obtain the bistability characteristics. The characteristics of the chalcogenide nonlinear FBGs such as: switching threshold intensity, bistability interval and on-off switching ratio are studied. The effects of FBG length and its third order nonlinear refractive index on FBG cha...
متن کاملUltrafast all-optical Nth-order differentiator and simultaneous repetition-rate multiplier of periodic pulse train.
The letter presents a technique for Nth-order differentiation of periodic pulse train, which can simultaneously multiply the input repetition rate. This approach uses a single linearly chirped apodized fiber Bragg grating, which grating profile is designed to map the spectral response of the Nth-order differentiator, and the chirp introduces a dispersion that, besides space-to-frequency mapping...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 17 22 شماره
صفحات -
تاریخ انتشار 2009